Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service Clouds
نویسندگان
چکیده
The advent of Cloud computing as a newmodel of service provisioning in distributed systems encourages researchers to investigate its benefits and drawbacks on executing scientific applications such as workflows. One of the most challenging problems in Clouds is workflow scheduling, i.e., the problem of satisfying the QoS requirements of the user as well as minimizing the cost of workflow execution. We have previously designed and analyzed a two-phase scheduling algorithm for utility Grids, called Partial Critical Paths (PCP), which aims to minimize the cost of workflow execution while meeting a userdefined deadline. However, we believe Clouds are different from utility Grids in three ways: on-demand resource provisioning, homogeneous networks, and the pay-as-you-go pricing model. In this paper, we adapt the PCP algorithm for the Cloud environment and propose two workflow scheduling algorithms: a one-phase algorithmwhich is called IaaS Cloud Partial Critical Paths (IC-PCP), and a two-phase algorithm which is called IaaS Cloud Partial Critical Paths with Deadline Distribution (IC-PCPD2). Both algorithms have a polynomial time complexity which make them suitable options for scheduling large workflows. The simulation results show that both algorithms have a promising performance, with IC-PCP performing better than IC-PCPD2 in most cases. © 2012 Elsevier B.V. All rights reserved.
منابع مشابه
A Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints
One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...
متن کاملAlgorithms for cost- and deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds
Large-scale applications expressed as scientific workflows are often grouped into ensembles of inter-related workflows. In this paper, we address a new and important problem concerning the efficient management of such ensembles under budget and deadline constraints on Infrastructure as a Service (IaaS) clouds. IaaS clouds are characterized by ondemand resource provisioning capabilities and a pa...
متن کاملDeadline Based Execution of Scientific workflows on IaaS Clouds using Resource Provisioning and Scheduling Strategy
Cloud computing is the latest distributed computing paradigm and it offers tremendous opportunities to solve large-scale scientific problems. However, it presents various challenges that need to be addressed in order to be efficiently utilized for workflow applications. Although the workflow scheduling problem has been widely studied, there are very few initiatives tailored for cloud environmen...
متن کاملA Survey on Deadline Constrained Workflow Scheduling Algorithms in Cloud Environment
Cloud Computing is the latest blooming technology in the era of Computer Science and Information Technology domain. There is an enormous pool of data centres, which are termed as Clouds where the services and associated data are being deployed and users need a constant Internet connection to access them. One of the highlights in Cloud is the delivering of applications or services in an on-deman...
متن کاملDeadline Constrained Scientific Workflow Scheduling on Dynamically Provisioned Cloud Resources
Commercial cloud computing resources are rapidly becoming the target platform on which to perform scientific computation, due to the massive leverage possible and elastic pay-as-you-go pricing model. The cloud allows researchers and institutions to only provision compute when required, and to scale seamlessly as needed. The cloud computing paradigm therefore presents a low capital, low barrier ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Future Generation Comp. Syst.
دوره 29 شماره
صفحات -
تاریخ انتشار 2013